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Mid-term course project design (April 15 & 22):
• Give a presentation (10min) that formulates the problem for the 5 questions, each with 1-2 slides:

1. What is the problem?
2. Why is it important
3. Why is it hard?
4. What is the limitation of the prior method?
5. What are the main components of the proposed method?

    Then detail the proposed method (3-4 slides) that uses an AI technique to solve the problem.

Each group: Presentation 10min + questions 5min
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Goal: Maximize the long-term expected reward w.r.t. to the policy 𝜋 𝐴! 𝑆!

max
!(#!|%!)

𝔼' 𝑅'

Markov Decision Process (MDP): Setup
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Recent Deep RL papers in Nature/Science
Paper Publisher Application
Avoiding fusion plasma tearing instability with deep 
reinforcement learning

Nature 2024 Tokamak control

Champion-level drone racing using deep reinforcement 
learning

Nature 2023 Drone racing

Top-down design of protein architectures with 
reinforcement learning

Science 2023 Protein design

Dense reinforcement learning for safety validation of 
autonomous vehicles

Nature 2023 Autonomous driving

Magnetic control of tokamak plasmas through deep 
reinforcement learning

Nature 2022 Tokamak control

Discovering faster matrix multiplication algorithms with 
reinforcement learning

Nature 2022 Matrix multiplication

A graph placement methodology for fast chip design Nature 2021 Chip design
A general reinforcement learning algorithm that masters 
chess, shogi, and Go through self-play

Science 2018 Board game

https://www.nature.com/articles/s41586-024-07024-9
https://www.nature.com/articles/s41586-024-07024-9
https://www.nature.com/articles/s41586-023-06419-4
https://www.nature.com/articles/s41586-023-06419-4
https://www.science.org/doi/10.1126/science.adf6591
https://www.science.org/doi/10.1126/science.adf6591
https://www.nature.com/articles/s41586-023-05732-2
https://www.nature.com/articles/s41586-023-05732-2
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-022-05172-4
https://www.nature.com/articles/s41586-022-05172-4
https://www.nature.com/articles/s41586-021-03544-w
https://www.science.org/doi/10.1126/science.aar6404
https://www.science.org/doi/10.1126/science.aar6404
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Application in AI for Science: from microscopic to macroscopic

particle physics

quantum computing

molecular dynamics

materials, cell biology
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mechanical engineering, plasma physics

energy, environment

PDEs
Life science

Materials
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How to Apply RL in AI for Science

1. Define the task
Specify:
• State 𝑆
• Action 𝐴
• Reward 𝑅
Learn:
• Policy 𝜋! 𝐴 𝑆

2. Choose an appropriate RL algorithm
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RL for Science: Case study

1. Deep RL for controlled nuclear fusion

2. Deep RL for molecule design
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RL for Science: Case study

1. Deep RL for controlled nuclear fusion

2. Deep RL for molecule design
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Plasma: Consisting of energetic ions and free electrons, interacted via 
electromagnetic (EM) field.

Examples: fire, lightning, sun, nuclear fusion

It is one of the four fundamental states of matter. It is the dominant form of ordinary 
matter in the universe.

ion

electron

ion (nuclei)
electron

interact via 
electromagnetic field

Preliminaries: plasma（等离子体）
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Preliminaries: Nuclear fusion



1. Percentage of mass transferred to energy: E = mc²
● Chemical: 0.0000001%
● Nuclear fission: 0.1%
● Nuclear fusion: 0.4%
● Black hole: 40%
● Matter + anti-matter: 100%

2. Inexhaustible supply of fusion fuels:
Deuterium can be distilled from all forms of water, while tritium will be produced during 
the fusion reaction as fusion neutrons interact with lithium. The reserve on Earth is able to 
fulfil the needs for millions of years.

3. Environment friendly:
● No CO2
● No long-lived radioactive waste
● No risk of meltdown

11

Preliminaries: Why nuclear fusion?

https://www.britannica.com/science/E-mc2-equation
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The temperature required for confining the fusion plasma are so hot (>10 million °C), 
and cannot be confined via any material. Two main ways of confinement:

1. Inertial confinement（惯性约束）:

Preliminaries: Two major ways of controlled nuclear fusion
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2. Magnetic confinement（磁约束）, using Tokamak (current work)

Preliminaries: Two major ways of controlled nuclear fusion
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Controlled nuclear fusion using Tokamak
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1. What is the problem?

Task: To shape and maintain a high-temperature plasma within the 
tokamak vessel. 

观测 𝑚: input observation, R92 
控制 𝑎: output control, R19

Each time step t have observation and 
needs to output a control signal:

control
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• Plasma height: 1.40m
• Major radius: 0.88m
• Plasma life span: 2s maximum
• Toroidal magnetic field: 1.43T
• Additional heating power: 4.5MW

Tokamak à configuration variable (TCV)
(current work)

ITER (cost $22 billion, test first plasma 
in 2025 and full fusion in 2035):

• Major radius: 6.2 m
• Magnetic field: 11.8 T
• Heating power: 320 MW
• Fusion power: 500 MW
• Discharge duration: up to 1000 s

1. What is the problem? Device overview
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2. Why is it important?

control

The effective control of plasma within a tokamak will pave the way for commercial 
nuclear fusion, which allows to produce energy energy that is 
(1) Virtually unlimited;
(2) Environmentally friendly.
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3. Why is it hard?

control

This requires high-dimensional, high-frequency, closed-loop control using magnetic 
actuator coils, further complicated by the diverse requirements across a wide range 
of plasma configurations.

control
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4. Limitation of prior methods: PID control

Error signal
= observation - target Control signal

Proportional–integral–derivative (PID) control:

Observation



20

Pros: Effective

Cons: 
(1) The controllers are designed on the basis of linearized model dynamics
(2) Requires substantial engineering effort, design effort and expertise whenever 
the target plasma configuration is changed, together with complex, real-time 
calculations for equilibrium estimation

4. Limitation of prior methods: PID control
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5. Main components of the proposed method [1]

state: 𝑚, R92 
action 𝑎, R19

    (frequency: 10 kHz)

[1] Degrave, Jonas, et al. "Magnetic control of tokamak plasmas through 
deep reinforcement learning." Nature 602.7897 (2022): 414-419.
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5. Main components of the proposed method
Reward: The target values 𝑔 of the objectives are often time-varying (e.g., the plasma current 
and boundary target points), and are sent to the policy as part of the observations: 𝜋 𝑎 𝑠, 𝑔 .
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5. Main component of the proposed method
Training:
    Perform training within a simulated environment using a solver.

Inference:
    Directly deploy it in the device.

RL method:
    Maximum a posteriori policy optimization (MPO) [1]. 

[1] Abdolmaleki, Abbas, et al. "Maximum a 
posteriori policy optimisation." ICLR 2018

Actor 𝜋: small MLP, must be fast. 
Critic 𝑄": LSTM, can be large, only 
used in training
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Inference code
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6. Main results
The position and shape (orange line) matches well with the target (blue)
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6. Main results
First demonstration of double droplet shape:
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RL for Science: Case study

1. Deep RL for controlled nuclear fusion

2. Deep RL for molecule design
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Task and significace

Task: Design molecules that optimize certain properties such as drug-likeness 
and synthetic accessibility, while obeying physical laws such as chemical valency.

control
Significance: Molecule design is important in drug discovery.
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Why is it hard?

1. Large size of chemical space: 
    The range of drug-like molecules has been estimated to be between 1023 and 1060 [1].

2. Chemical space is discrete, and molecular properties are highly sensitive to 
small changes in the molecular structure

[1] P. G. Polishchuk, T. I. Madzhidov, and A. Varnek. Estimation of the size 
of drug-like chemical space based on gdb-17 data. Journal of Computer-
Aided Molecular Design, 27(8):675–679, Aug 2013. 
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What is the limitation of prior methods?

There are multiple prior works that uses recurrent neural networks [1][2], 
autoencoder [3], GANs [4], they are limited in 
1. Generating novel and valid molecular graphs that can directly optimize various desired 

physical, chemical and biological property objectives.
2. Actively explore the vast chemical space.

[1] E. Jannik Bjerrum and R. Threlfall. Molecular Generation with Recurrent 
Neural Networks (RNNs). arXiv preprint arXiv:1705.04612, 2017. 
[2] M. H. S. Segler, et al. Generating focused molecule libraries for drug 
discovery with recurrent neural networks. ACS Central Science, 4(1):120–
131, 2018. 
[3] R.Goḿez-Bombarelli, et al. Auto- matic chemical design using a data-
driven continuous representation of molecules. ACS Central Science, 2016.
[4] B. Sanchez-Lengeling, C. Outeiral, G. L. Guimaraes, and A. Aspuru-
Guzik. Optimizing distributions over molecular space. An Objective-
Reinforced Generative Adversarial Network for Inverse-design Chemistry 
(ORGANIC). ChemRxiv e-prints, 8 2017. 
 



Recall: Foundational principles in deep learning
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1. Principle 1 (deep principle): Model a hard transformation by composing many 
simple, easy transformations.

2. Principle 2 (end-to-end law): Directly optimizing the final objective using maximum 
likelihood and information theory.

3. Principle 3 (the scaling law): AI methods that leverage computation are ultimately 
the most effective way of improvements (from "The bitter lesson" by Rich Sutton).

4. Principle 4 (the data law): Data is the ultimate way of regularization.
5. Principle 5 (consistency law): The more consistent between training and testing, 

the better the performance.

reinforcement learningstarting configuration target configuration

…

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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state 𝑠: current graph
action 𝑎: (NodeID1, NodeID2, EdgeType, Stop)       (dimension does not change!)
reward 𝑟: domain-specific rewards + adversarial rewards (using GAN)

What are the main component of the proposed method?

The adversarial reward encourages the generated molecules resembles given molecules. 
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What are the main component of the proposed method?

Policy 𝜋" 𝑎 𝑠 : Graph Neural Networks (GNNs, to be introduced in class 10)

RL method: Proximal Policy Optimization (PPO) [1]

[1] Schulman, John, et al. "Proximal policy optimization 
algorithms." arXiv preprint arXiv:1707.06347 (2017).
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Main results: Property optimization

Comparison of the top 3 property scores of generated molecules found by each model: 

logP: Octanol-water partition coefficient
QED: druglikeness
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Main results: Property optimization

Generated molecules

logP: Octanol-water partition coefficient
QED: druglikeness
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Main results: Property targerting

Comparison of the effectiveness of property targeting task:

logP: Octanol-water partition coefficient
MW: molecular weight
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Other Deep RL work in AI4Science: Life science (1)
Protein:
1. Wang, Yi, et al. "Self-play reinforcement learning guides protein engineering." Nature Machine 

Intelligence 5.8 (2023): 845-860.
2. Lutz, Isaac D., et al. "Top-down design of protein architectures with reinforcement 

learning." Science 380.6642 (2023): 266-273.
3. Lee, Minji, et al. "Protein sequence design in a latent space via model-based reinforcement learning." 

(2022).
4. Xu, Xiaopeng, et al. "AB-Gen: antibody library design with generative pre-trained transformer and deep 

reinforcement learning." Genomics, Proteomics & Bioinformatics (2023).

Molecules:
1. Jeon, Woosung, and Dongsup Kim. "Autonomous molecule generation using reinforcement learning and 

docking to develop potential novel inhibitors." Scientific reports 10.1 (2020): 22104.
2. Korshunova, Maria, et al. "Generative and reinforcement learning approaches for the automated de novo 

design of bioactive compounds." Communications Chemistry 5.1 (2022): 129.
3. Mazuz, Eyal, et al. "Molecule generation using transformers and policy gradient reinforcement 

learning." Scientific Reports 13.1 (2023): 8799.
4. Polykovskiy, Daniil, et al. "Molecular sets (MOSES): a benchmarking platform for molecular generation 

models." Frontiers in pharmacology 11 (2020): 565644.
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Other Deep RL work in AI4Science: Life science (2)

Molecules (continued):
5. Hu, Xiuyuan, et al. "De novo Drug Design using Reinforcement Learning with Multiple GPT 

Agents." Advances in Neural Information Processing Systems 36 (2024).
6. Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de novo drug 

design." Science advances 4.7 (2018): eaap7885.

RNA:
1. Whatley, Alexander, Zhekun Luo, and Xiangru Tang. "Improving RNA secondary structure design using 

deep reinforcement learning." arXiv preprint arXiv:2111.04504 (2021).
2. Eastman, Peter, et al. "Solving the RNA design problem with reinforcement learning." PLoS computational 

biology 14.6 (2018): e1006176.

Genomics:
1. Nicholls, Hannah L., et al. "Reaching the end-game for GWAS: machine learning approaches for the 

prioritization of complex disease loci." Frontiers in genetics 11 (2020): 521712.
2. Karami, Mohsen, et al. "Revolutionizing genomics with reinforcement learning techniques." arXiv preprint 

arXiv:2302.13268 (2023).
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Other Deep RL work in AI4Science: Fluid control (1)
Cylinder:
1. Chen, Wenjie, et al. "Deep reinforcement learning-based active flow control of vortex-induced vibration of a 

square cylinder." Physics of Fluids 35.5 (2023). (SAC)
2. Wang, Qiulei, et al. "DRLinFluids: An open-source Python platform of coupling deep reinforcement learning 

and OpenFOAM." Physics of Fluids 34.8 (2022). (SAC)
3. Wang, Qiulei, et al. "Dynamic feature-based deep reinforcement learning for flow control of circular cylinder 

with sparse surface pressure sensing." arXiv preprint arXiv:2307.01995 (2023). (SAC & PPO)
4. Tang, Hongwei, et al. "Robust active flow control over a range of Reynolds numbers using an artificial 

neural network trained through deep reinforcement learning." Physics of Fluids 32.5 (2020). (PPO)
5. Xu, Hui, et al. "Active flow control with rotating cylinders by an artificial neural network trained by deep 

reinforcement learning." Journal of Hydrodynamics 32.2 (2020): 254-258. (PPO)
6. Rabault, Jean, et al. "Artificial neural networks trained through deep reinforcement learning discover 

control strategies for active flow control." Journal of fluid mechanics 865 (2019): 281-302. (PPO)
7. Wang, Zhicheng, et al. "Deep reinforcement transfer learning of active control for bluff body flows at high 

Reynolds number." Journal of Fluid Mechanics 973 (2023): A32. (TD3)
8. Zheng, Changdong, et al. "Data-efficient deep reinforcement learning with expert demonstration for active 

flow control." Physics of Fluids 34.11 (2022). (SAC)
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Other Deep RL work in AI4Science: Fluid control (2)
Point:
1. Mei, Jiazhong, J. Nathan Kutz, and Steven L. Brunton. "Observability-Based Energy Efficient Path 

Planning with Background Flow via Deep Reinforcement Learning." 2023 62nd IEEE Conference on 
Decision and Control (CDC). IEEE, 2023. (PPO)

2. Gunnarson, Peter, et al. "Learning efficient navigation in vortical flow fields." Nature communications 12.1 
(2021): 7143. (V-RACER)

Foil:
1. Novati, Guido, and Petros Koumoutsakos. "Remember and forget for experience replay." International 

Conference on Machine Learning. PMLR, 2019. (V-RACER)
2. Wang ZP, Lin RJ, Zhao ZY, et al. Learn to flap: foil non-parametric path planning via deep reinforcement 

learning. Journal of Fluid Mechanics. 2024;984:A9. (PPO)

Fish:
1. Verma, Siddhartha, Guido Novati, and Petros Koumoutsakos. "Efficient collective swimming by harnessing 

vortices through deep reinforcement learning." Proceedings of the National Academy of Sciences 115.23 
(2018): 5849-5854. (DRQN)

2. Mandralis, Ioannis, et al. "Learning swimming escape patterns for larval fish under energy constraints." 
Physical Review Fluids 6.9 (2021): 093101. (V-RACER)
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Other Deep RL work in AI4Science: Materials science (1)

Materials:
1. Rajak, Pankaj, et al. "Autonomous reinforcement learning agent for chemical vapor deposition synthesis of 

quantum materials." npj Computational Materials 7.1 (2021): 108.
2. Zamaraeva, Elena, et al. "Reinforcement learning in crystal structure prediction." Digital Discovery 2.6 

(2023): 1831-1840.
3. Zheng, Bowen, Zeyu Zheng, and Grace X. Gu. "Designing mechanically tough graphene oxide materials 

using deep reinforcement learning." npj Computational Materials 8.1 (2022): 225.
4. Govindarajan, Prashant, et al. "Learning Conditional Policies for Crystal Design Using Offline 

Reinforcement Learning." Digital Discovery (2024).
5. Pandey, Ashish, et al. "Reinforcement learning based carbon nanotube growth automation." 2021 IEEE 

Applied Imagery Pattern Recognition Workshop (AIPR). IEEE, 2021.
6. Pan, Elton, Christopher Karpovich, and Elsa Olivetti. "Deep reinforcement learning for inverse inorganic 

materials design." arXiv preprint arXiv:2210.11931 (2022).
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Other Deep RL work in AI4Science: Materials science (2)

Meta-materials/composite/polymer:
1. Sui, Fanping, et al. "Deep reinforcement learning for digital materials design." ACS Materials Letters 3.10 

(2021): 1433-1439.
2. Gongora, Aldair E., et al. "Designing composites with target effective young’s modulus using reinforcement 

learning." Proceedings of the 6th Annual ACM Symposium on Computational Fabrication. 2021.
3. Ma, Ruimin, Hanfeng Zhang, and Tengfei Luo. "Exploring high thermal conductivity amorphous polymers 

using reinforcement learning." ACS Applied Materials & Interfaces 14.13 (2022): 15587-15598.
4. Rosafalco, Luca, et al. "Reinforcement learning optimisation for graded metamaterial design using a 

physical-based constraint on the state representation and action space." Scientific Reports 13.1 (2023): 
21836.
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Goal: Maximize the long-term expected reward w.r.t. to the policy 𝜋 𝐴! 𝑆!

max
!(#!|%!)

𝔼' 𝑅'

Markov Decision Process (MDP): Setup
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Application in AI for Science: from microscopic to macroscopic
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