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Project guideline

Mid-term course project design (April 15 & 22):
« Give a presentation (10min) that formulates the problem for the 5 questions, each with 1-2 slides:

1. What is the problem?

2. Why is it important

3. Why is it hard?

4. What is the limitation of the prior method?

5. What are the main components of the proposed method?

Then detail the proposed method (3-4 slides) that uses an Al technique to solve the problem.

Each group: Presentation 10min + questions 5min



Markov Decision Process (MDP): Setup

state reward action
S, R, A
RHI {

S.. | Environment ]

-

Goal: Maximize the long-term expected reward w.r.t. to the policy w(4;|S;)

max [E;|R
T(A¢|St) t[ t]



Recent Deep RL papers in Nature/Science

Paper | Publisher | Application

Avoiding fusion plasma tearing instability with deep Nature 2024  Tokamak control
reinforcement learning

Champion-level drone racing using deep reinforcement Nature 2023  Drone racing
learning

Top-down design of protein architectures with Science 2023 Protein design
reinforcement learning

Dense reinforcement learning for safety validation of Nature 2023  Autonomous driving
autonomous vehicles

Magnetic control of tokamak plasmas through deep Nature 2022  Tokamak control
reinforcement learning

Discovering faster matrix multiplication algorithms with Nature 2022  Matrix multiplication
reinforcement learning

A graph placement methodology for fast chip design Nature 2021 Chip design

A general reinforcement learning algorithm that masters Science 2018 Board game

chess, shogi, and Go through self-play


https://www.nature.com/articles/s41586-024-07024-9
https://www.nature.com/articles/s41586-024-07024-9
https://www.nature.com/articles/s41586-023-06419-4
https://www.nature.com/articles/s41586-023-06419-4
https://www.science.org/doi/10.1126/science.adf6591
https://www.science.org/doi/10.1126/science.adf6591
https://www.nature.com/articles/s41586-023-05732-2
https://www.nature.com/articles/s41586-023-05732-2
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-022-05172-4
https://www.nature.com/articles/s41586-022-05172-4
https://www.nature.com/articles/s41586-021-03544-w
https://www.science.org/doi/10.1126/science.aar6404
https://www.science.org/doi/10.1126/science.aar6404
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How to Apply RL in Al for Science

:[Agent}

state reward action

R1+1 F-
S.. | Environment ]4

\.

1. Define the task
Specify:

o State S
 Action 4

« Reward R
Learn:

* Policy mg(AlS)

2. Choose an appropriate RL algorithm



RL for Science: Case study

1. Deep RL for controlled nuclear fusion
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Preliminaries: plasma (ZEFK)

Plasma: Consisting of energetic ions and free electrons, interacted via
electromagnetic (EM) field.

Examples: fire, lightning, sun, nuclear fusion

It is one of the four fundamental states of matter. It is the dominant form of ordinary

matter in the universe.
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Preliminaries: Nuclear fusion
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Preliminaries: Why nuclear fusion?

1. Percentage of mass transferred to energy: E = mc?
Chemical: 0.0000001%

Nuclear fission: 0.1%

Nuclear fusion: 0.4%

Black hole: 40%

Matter + anti-matter: 100%

2. Inexhaustible supply of fusion fuels:

Deuterium can be distilled from all forms of water, while tritium will be produced during
the fusion reaction as fusion neutrons interact with lithium. The reserve on Earth is able to
fulfil the needs for millions of years.

3. Environment friendly:
« No CO,
» No long-lived radioactive waste
o No risk of meltdown
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https://www.britannica.com/science/E-mc2-equation

Preliminaries: Two major ways of controlled nuclear fusion

The temperature required for confining the fusion plasma are so hot (>10 million °C),
and cannot be confined via any material. Two main ways of confinement:

1. Inertial confinement (tE{429%R)
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Preliminaries: Two major ways of controlled nuclear fusion

2. Magnetic confinement (#2J%K) , using Tokamak (current work)

Inner poloidal field coils
(primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

Toroidal field coils

Resulting helical magnetic field

Toroidal magnetic field

Plasma electric current
(secondary transformer circuit)
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Controlled nuclear fusion using Tokamak

Source: JET Lab




1. What is the problem?

Task: To shape and maintain a high-temperature plasma within the
tokamak vessel.

Each time step t have observation and
needs to output a control signal:

WL m: input observation, R92
=341 a: output control, R

a 16 Poloidal
field coils

Ohmic +

coils

Fast
coil
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1. What is the problem? Device overview

Tokamak a configuration variable (TCV)
(current work)

Plasma height: 1.40m

Major radius: 0.88m

Plasma life span: 2s maximum
Toroidal magnetic field: 1.43T
Additional heating power: 4. 5MW

ITER (cost $22 billion, test first plasma
in 2025 and full fusion in 2035):

Major radius: 6.2 m
Magnetic field: 11.8 T
Heating power: 320 MW
Fusion power: 500 MW
Discharge duration: up to 1000 s

coils of the TCV.d View inside the TCV (Alain Herzog/EPFL), showing the limiter tiling, baffles and central column.
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2. Why is it important?

The effective control of plasma within a tokamak will pave the way for commercial
nuclear fusion, which allows to produce energy energy that is

(1) Virtually unlimited;

(2) Environmentally friendly.



3. Why is it hard?

This requires high-dimensional, high-frequency, closed-loop control using magnetic
actuator coils, further complicated by the diverse requirements across a wide range
of plasma configurations.

a 16 Poloidal + Ohmic + Fast

field coils coils coil
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4. Limitation of prior methods: PID control

Proportional—integral—derivative (PID) control:

4>{ P Ke(t) I
Error signal

_ : Control signal Observation
= observatiop - target +
r(t) ,( : ) e(t) u(t) [prant/ | (t)
_>
+ Process

~ A




4. Limitation of prior methods: PID control

Pros: Effective

Cons:
(1) The controllers are designed on the basis of linearized model dynamics
(2) Requires substantial engineering effort, design effort and expertise whenever

the target plasma configuration is changed, together with complex, real-time
calculations for equilibrium estimation
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5. Main components of the proposed method [1]

[1] Degrave, Jonas, et al. "Magnetic control of tokamak plasmas through
deep reinforcement learning." Nature 602.7897 (2022): 414-419.

g TCV

state: m, R®?
action a, R™ o
(frequency: 10 kHz)

@ Our architecture

<_m__
Targets t .
9 policy
a >
2
NUE /
a 16 Poloidal + Ohmic + Fast

field coils coils coil
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5. Main components of the proposed method

Reward: The target values g of the objectives are often time-varying (e.g., the plasma current
and boundary target points), and are sent to the policy as part of the observations: n(a|s, g).

Reward Component Description
Diverted Whether the plasma is limited by the wall or diverted through an X-point.
E/F Currents The currents in the E and F coils, in amperes.
Elongation The elongation of the plasma, this is its height divided by its width.
LCFS Distance The distance in meters from the target points to the nearest point on the last closed flux surface (LCFS).

Legs Normalized Flux The difference in normalized flux from the flux at the LCFS at target leg points.

Limit Point The distance in meters from the actual limit point (wall or X-point) and target limit point.
OH Current Diff The difference in amperes between the two OH coils.
Plasma Current The plasma current in amperes.
R The radial position of the plasma axis/centre, in meters.
Radius Half of the width of the plasma, in meters.
Triangularity The upper triangularity is defined as the radial position of the highest point relative to the median radial position. The overall triangularity

is the mean of the upper and lower triangularity.

Voltage Out of Bounds Penalty for going outside of the voltage limits.

X-point Count Return the number of actual and requested X-points within the vessel.
X-point Distance Returns the distance in meters from actual X-points to target X-points. Only X-points within 20cm are considered.
X-point Far For any X-point that isn’t requested, return the distance in meters from the X-point to the LCFS. This helps avoid extra X-points that may

attract the plasma and lead to instabilities.

X-point Flux Gradient The gradient of the flux at the target location with a target of 0 gradient. This encourages an X-point to form at the target location, but isn’t
very precise on the exact location.

X-point Normalized Flux  The difference in normalized flux from the flux at the LCFS at target X-points. This encourages the X-point to be on the last closed flux
surface, and therefore for the plasma to be diverted.

V4 The vertical position of the plasma axis/centre, in meters.




5. Main component of the proposed method

Training:

Perform training within a simulated environment using a solver.

Inference:
Directly deploy it in the device.

RL method:

Maximum a posteriori policy optimization (MPO) [1].

Algorithm 1 Actor-Critic

Initialize 7(©), Q™ ", k « 0

repeat
Qw(k) — PolicyEvaluation(w(k), QT
n(k+1) « PolicyImprovement (7(*), Q™
k<—k+1

until convergence

(k—1)

)

(k))

Actor r: small MLP, must be fast.
Critic Q™: LSTM, can be large, only
used in training

[1] Abdolmaleki, Abbas, et al. "Maximum a
posteriori policy optimisation." ICLR 2018
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Inference code

22 def run_loop(env: environment.Environment, agent,

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

max_steps: int
"""Run an agent.™""
results = []
agent.reset()
ts = env.reset()

for _ in range(max_steps):

obs = ts.observation
action = agent.step(ts)
ts = env.step(action)

100000) -> trajectory.Trajectory:

results.append(trajectory.Trajectory(
measurements=obs ["measurements"],
references=obs["references"],

actions=action,

reward=np.array(ts.reward)))

if ts.last():
break

return trajectory.Trajectory.stack(results)
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6. Main results

The position and shape (orange line) matches well with the target (blue)
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6. Main results

First demonstration of double droplet shape:
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RL for Science: Case study

1. Deep RL for controlled nuclear fusion
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Task and significace

Task: Design molecules that optimize certain properties such as drug-likeness
and synthetic accessibility, while obeying physical laws such as chemical valency.

Significance: Molecule design is important in drug discovery.



Why is it hard?

1. Large size of chemical space:
The range of drug-like molecules has been estimated to be between 1023 and 109° [1].

2. Chemical space is discrete, and molecular properties are highly sensitive to
small changes in the molecular structure

[1] P. G. Polishchuk, T. I. Madzhidov, and A. Varnek. Estimation of the size
of drug-like chemical space based on gdb-17 data. Journal of Computer-
Aided Molecular Design, 27(8):675-679, Aug 2013.



What is the limitation of prior methods?

There are multiple prior works that uses recurrent neural networks [1][2],
autoencoder [3], GANs [4], they are limited in

1. Generating novel and valid molecular graphs that can directly optimize various desired
physical, chemical and biological property objectives.

2. Actively explore the vast chemical space.

[1] E. Jannik Bjerrum and R. Threlfall. Molecular Generation with Recurrent
Neural Networks (RNNSs). arXiv preprint arXiv:1705.04612, 2017.

[2] M. H. S. Segler, et al. Generating focused molecule libraries for drug
discovery with recurrent neural networks. ACS Central Science, 4(1):120—
131, 2018.

[3] R.Goémez-Bombarelli, et al. Auto- matic chemical design using a data-
driven continuous representation of molecules. ACS Central Science, 2016.
[4] B. Sanchez-Lengeling, C. Outeiral, G. L. Guimaraes, and A. Aspuru-
Guzik. Optimizing distributions over molecular space. An Objective-
Reinforced Generative Adversarial Network for Inverse-design Chemistry
(ORGANIC). ChemRxiv e-prints, 8 2017.



Recall: Foundational principles in deep learning

1. Principle 1 (deep principle): Model a hard transformation by composing many
simple, easy transformations.

2. Principle 2 (end-to-end law): Directly optimizing the final objective using maximum
likelihood and information theory.

3. Principle 3 (the scaling law): Al methods that leverage computation are ultimately
the most effective way of improvements (from "The bitter lesson" by Rich Sutton).

4. Principle 4 (the data law): Data is the ultimate way of regularization.

5. Principle 5 (consistency law): The more consistent between training and testing,
the better the performance.

starting configuration reinforcement learning target configuration
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http://www.incompleteideas.net/IncIdeas/BitterLesson.html

What are the main component of the proposed method?

(1) NodelD

© Node
— (6)
—— Edge ©

n & |4 [NodelD
—> gﬂaessssira‘ge () Ogrve nJ é\) Sample NodelD Act Env | render 0.1 | Step reward
- Nod 8) i J0) EdgeType update = 1 | Final reward

oae
embedding @ Stop
(d) Dynamics
(a) State — G, Scaffold — C (b) GCPN — mg(a;|G. v C) (c)Action—a;~mg  p(Gpy1|Ge ar) (e) State — Gg4q (f) Reward —r,

state s: current graph
action a: (NodelD1, NodelD2, EdgeType, Stop) (dimension does not change!)
reward r: domain-specific rewards + adversarial rewards (using GAN)

The adversarial reward encourages the generated molecules resembles given molecules.
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What are the main component of the proposed method?

Policy 7y (als): Graph Neural Networks (GNNSs, to be introduced in class 10)

RL method: Proximal Policy Optimization (PPO) [1]

o (at |St)

max LEYP(0) = E,[min(r(0) Az, clip(r:(8), 1 — €, 1 + €) Ay)], 7(8) =
T‘-Gold(a’t|3t)

[1] Schulman, John, et al. "Proximal policy optimization
algorithms." arXiv preprint arXiv:1707.06347 (2017).



Main results: Property optimization

Comparison of the top 3 property scores of generated molecules found by each model:

Penalized logP QED

Method

Ist 2nd 3rd Validity Ist 2nd 3rd  Validity
ZINC 452 430 4.23 100.0% 0.948 0.948 0.948 100.0%
Hill Climbing  — - — — 0.838 0.814 0.814 100.0%
ORGAN 3.63 349 344 0.4% 0.896 0.824 0.820 2.2%
JT-VAE 5.30 4.93 449 100.0% 0.925 0.911 0.910 100.0%
GCPN 798 785 780 100.0% 0948 0.947 0.946 100.0%

logP: Octanol-water partition coefficient
QED: druglikeness



Main results: Property optimization

Generated molecules

7.98 7.48
A S
= 13
SNAKIT7
TR

7.12 23.88*

(a) Penalized logP optimization

0.948 0.945
> 2 ey
P- il

\ 28
0.944 0.941

(b) QED optimization

logP: Octanol-water partition coefficient
QED: druglikeness
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Main results: Property targerting

Comparison of the effectiveness of property targeting task:

—2.5 <logP < -2 5 <logP <5.5 150 < MW <200 500 <MW <550

Method

Success Diversity Success Diversity Success Diversity Success Diversity
ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 -
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 - 0.2% 0.909 15.1% 0.759 0.1% 0.907

GCPN 85.5% 0.392 54.7 % 0.855 76.1% 0.921 74.1% 0.920

logP: Octanol-water partition coefficient
MW: molecular weight
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Other Deep RL work in Al4Science: Life science (1)

Protein:

1.

Wang, Yi, et al. "Self-play reinforcement learning guides protein engineering." Nature Machine
Intelligence 5.8 (2023): 845-860.

Lutz, Isaac D., et al. "Top-down design of protein architectures with reinforcement

learning." Science 380.6642 (2023): 266-273.

Lee, Minji, et al. "Protein sequence design in a latent space via model-based reinforcement learning."
(2022).

Xu, Xiaopeng, et al. "AB-Gen: antibody library design with generative pre-trained transformer and deep
reinforcement learning." Genomics, Proteomics & Bioinformatics (2023).

Molecules:

1.

2.

Jeon, Woosung, and Dongsup Kim. "Autonomous molecule generation using reinforcement learning and
docking to develop potential novel inhibitors." Scientific reports 10.1 (2020): 22104.

Korshunova, Maria, et al. "Generative and reinforcement learning approaches for the automated de novo
design of bioactive compounds." Communications Chemistry 5.1 (2022): 129.

Mazuz, Eyal, et al. "Molecule generation using transformers and policy gradient reinforcement

learning." Scientific Reports 13.1 (2023): 8799.

Polykovskiy, Daniil, et al. "Molecular sets (MOSES): a benchmarking platform for molecular generation
models." Frontiers in pharmacology 11 (2020): 565644.
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Other Deep RL work in Al4Science: Life science (2)

Molecules (continued):

5. Hu, Xiuyuan, et al. "De novo Drug Design using Reinforcement Learning with Multiple GPT
Agents." Advances in Neural Information Processing Systems 36 (2024).

6. Popova, Mariya, Olexandr Isayev, and Alexander Tropsha. "Deep reinforcement learning for de novo drug
design." Science advances 4.7 (2018): eaap7885.

RNA:

1. Whatley, Alexander, Zhekun Luo, and Xiangru Tang. "Improving RNA secondary structure design using
deep reinforcement learning." arXiv preprint arXiv:2111.04504 (2021).

2. Eastman, Peter, et al. "Solving the RNA design problem with reinforcement learning." PLoS computational
biology 14.6 (2018): e1006176.

Genomics:

1. Nicholls, Hannah L., et al. "Reaching the end-game for GWAS: machine learning approaches for the
prioritization of complex disease loci." Frontiers in genetics 11 (2020): 521712.

2. Karami, Mohsen, et al. "Revolutionizing genomics with reinforcement learning techniques." arXiv preprint
arXiv:2302.13268 (2023).
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Other Deep RL work in Al4Science: Fluid control (1)

Cylinder:

1.

2.

Chen, Wenjie, et al. "Deep reinforcement learning-based active flow control of vortex-induced vibration of a
square cylinder." Physics of Fluids 35.5 (2023). (SAC)

Wang, Qiulei, et al. "DRLinFluids: An open-source Python platform of coupling deep reinforcement learning
and OpenFOAM." Physics of Fluids 34.8 (2022). (SAC)

Wang, Qiulei, et al. "Dynamic feature-based deep reinforcement learning for flow control of circular cylinder
with sparse surface pressure sensing." arXiv preprint arXiv:2307.01995 (2023). (SAC & PPO)

Tang, Hongwei, et al. "Robust active flow control over a range of Reynolds numbers using an artificial
neural network trained through deep reinforcement learning." Physics of Fluids 32.5 (2020). (PPO)

Xu, Hui, et al. "Active flow control with rotating cylinders by an artificial neural network trained by deep
reinforcement learning." Journal of Hydrodynamics 32.2 (2020): 254-258. (PPO)

Rabault, Jean, et al. "Artificial neural networks trained through deep reinforcement learning discover
control strategies for active flow control." Journal of fluid mechanics 865 (2019): 281-302. (PPO)

Wang, Zhicheng, et al. "Deep reinforcement transfer learning of active control for bluff body flows at high
Reynolds number." Journal of Fluid Mechanics 973 (2023): A32. (TD3)

Zheng, Changdong, et al. "Data-efficient deep reinforcement learning with expert demonstration for active

flow control." Physics of Fluids 34.11 (2022). (SAC)
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Other Deep RL work in Al4Science: Fluid control (2)

Point:

1. Mei, Jiazhong, J. Nathan Kutz, and Steven L. Brunton. "Observability-Based Energy Efficient Path
Planning with Background Flow via Deep Reinforcement Learning." 2023 62nd IEEE Conference on
Decision and Control (CDC). IEEE, 2023. (PPO)

2. Gunnarson, Peter, et al. "Learning efficient navigation in vortical flow fields." Nature communications 12.1
(2021): 7143. (V-RACER)

Foil:

1. Novati, Guido, and Petros Koumoutsakos. "Remember and forget for experience replay." International
Conference on Machine Learning. PMLR, 2019. (V-RACER)

2. Wang ZP, Lin RJ, Zhao ZY, et al. Learn to flap: foil non-parametric path planning via deep reinforcement
learning. Journal of Fluid Mechanics. 2024;984:A9. (PPO)

Fish:

1. Verma, Siddhartha, Guido Novati, and Petros Koumoutsakos. "Efficient collective swimming by harnessing
vortices through deep reinforcement learning." Proceedings of the National Academy of Sciences 115.23
(2018): 5849-5854. (DRQN)

2. Mandralis, loannis, et al. "Learning swimming escape patterns for larval fish under energy constraints."
Physical Review Fluids 6.9 (2021): 093101. (V-RACER) 48



Other Deep RL work in Al4Science: Materials science (1)

Materials:

1.

Rajak, Pankaj, et al. "Autonomous reinforcement learning agent for chemical vapor deposition synthesis of
quantum materials." npj Computational Materials 7.1 (2021): 108.

Zamaraeva, Elena, et al. "Reinforcement learning in crystal structure prediction." Digital Discovery 2.6
(2023): 1831-1840.

Zheng, Bowen, Zeyu Zheng, and Grace X. Gu. "Designing mechanically tough graphene oxide materials
using deep reinforcement learning." npj Computational Materials 8.1 (2022): 225.

Govindarajan, Prashant, et al. "Learning Conditional Policies for Crystal Design Using Offline
Reinforcement Learning." Digital Discovery (2024).

Pandey, Ashish, et al. "Reinforcement learning based carbon nanotube growth automation." 2021 IEEE
Applied Imagery Pattern Recognition Workshop (AIPR). IEEE, 2021.

Pan, Elton, Christopher Karpovich, and Elsa Olivetti. "Deep reinforcement learning for inverse inorganic
materials design." arXiv preprint arXiv:2210.11931 (2022).
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Other Deep RL work in Al4Science: Materials science (2)

Meta-materials/composite/polymer:

1. Sui, Fanping, et al. "Deep reinforcement learning for digital materials design." ACS Materials Letters 3.10
(2021): 1433-1439.

2. Gongora, Aldair E., et al. "Designing composites with target effective young’s modulus using reinforcement
learning." Proceedings of the 6th Annual ACM Symposium on Computational Fabrication. 2021.

3. Ma, Ruimin, Hanfeng Zhang, and Tengfei Luo. "Exploring high thermal conductivity amorphous polymers
using reinforcement learning." ACS Applied Materials & Interfaces 14.13 (2022): 15587-15598.

4. Rosafalco, Luca, et al. "Reinforcement learning optimisation for graded metamaterial design using a
physical-based constraint on the state representation and action space." Scientific Reports 13.1 (2023):
21836.
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Markov Decision Process (MDP): Setup

state reward action
S, R, A
RHI {

S.. | Environment ]

-

Goal: Maximize the long-term expected reward w.r.t. to the policy m(A4;|S;)

max [E;|R
T(A¢|St) t[ t]
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